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Abstract—In the bacterium Escherichia coli, gcpE is an essential gene in the methylerythritol phosphate pathway for isoprenoid
biosynthesis. Incubation of [1-3H]methylerythritol with an E. coli mutant defective in the gcpE gene resulted in the accumulation
of [1-3H]methylerythritol 2,4-cyclodiphosphate. This suggests that the GCPE protein is involved in the further conversion of
methylerythritol cyclodiphosphate into isoprenoids. © 2002 Elsevier Science Ltd. All rights reserved.

In most bacteria and in all plant plastids, isoprenoids
are not synthesized via the classical mevalonate (MVA)
pathway, but via the alternative MVA-independent 2-
C-methyl-D-erythritol phosphate (MEP) route (Fig. 1).1

In the latter metabolic pathway, isoprenoids are derived
from pyruvate 1 and glyceraldehyde 3-phosphate 2,
which are converted into 1-deoxy-D-xylulose 5-phos-
phate (DXP) 3 by the thiamin diphosphate dependent
enzyme DXP synthase. Four additional intermediates
are known: MEP 4, which results from the rearrange-
ment of DXP followed by a reduction, 4-diphospho-
cytidyl methylerythritol 5 and its 2-phosphate 6, as well
as methylerythritol 2,4-cyclodiphosphate 7. It is striking
that the last four intermediates are characterized by the
same oxidation state as 2-C-methyl-D-erythritol (ME).
The discovery of the MEP pathway was the result of
intense labeling experiments on bacterial triterpenoids
of the hopane series2 or on diterpenoids from ginkgo
embryos,3 followed by diverse genetic and bioinfor-
matic approaches to identify the genes encoding DXP
synthase (dxs),4 DXP reductoisomerase (dxr)5 and the
additional known enzymes of the pathway (ispD/ygbP,
ispE/ychB and ispF/ygbB).6 Both labeling and genetic

approaches also showed that in E. coli the MEP path-
way branches at an unknown step, leading to the
independent synthesis of isopentenyl diphosphate 8
(IPP) and dimethylallyl diphosphate 9 (DMAPP), the
universal precursors of all isoprenoids.7 In addition,
there is strong genetic evidence for the involvement of
two more genes, gcpE and lytB, in the main trunk of
the pathway.8,9 The biochemical function of the
proteins encoded by those genes, however, remains to
be established. ME cyclodiphosphate 7 is the last inter-
mediate of the pathway described to date. The conver-
sion of a ME cyclodiphosphate derivative into IPP and
DMAPP, i.e. into the diphosphates of an allylic or a
homoallylic alcohol is not obvious. Formally, it
requires two reduction steps and one elimination. In
this work, we report the accumulation of ME
cyclodiphosphate 7 in E. coli cells defective in the gcpE
gene, and we discuss the role of the gcpE gene product
in the metabolism of ME cyclodiphosphate and the
biosynthesis of isoprenoids.

Accumulation of methylerythritol cyclodiphosphate by an
E. coli strain defective in the gcpE gene

For the identification of unknown genes of the MEP
pathway, the E. coli EcAB3-1 strain possessing the
enzymes required for mevalonate metabolism (meval-
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Figure 1. Methylerythritol phosphate (MEP) pathway for isoprenoid biosynthesis in Escherichia coli.

onate kinase, diphosphomevalonate kinase, diphospho-
mevalonate decarboxylase and IPP isomerase) was gen-
erated. Such a strain is capable of utilizing exogenous
mevalonate added to the culture medium to build its
isoprenoids and was utilized as parent strain for the
generation of mutants of the MEP pathway.10 The E.
coli EcAB3-3 strain, lacking the gcpE gene and capable
of utilizing MVA, was only growing when MVA was
added to the culture medium. This showed that gcpE
was an essential gene in the MEP pathway.8

E. coli is the only known organism, which is capable of
utilizing exogenous free ME. After disruption of the
dxs or the dxr gene, growth can be restored by the
addition of free ME.11 This implies that an unknown
kinase is capable of converting the free tetrol into the
corresponding 4-phosphate, which is the normal inter-
mediate in the MEP pathway. The strategy used for the
tentative identification of the GCPE protein substrate
was thus based on the construction of the E. coli strain
EcAB4-5 capable of utilizing MVA, and harboring
simultaneously a disruption of the dxs gene, in order to
enhance the incorporation of free ME, as well as a
deletion of the gcpE gene, in order to induce the
accumulation of the substrate of the GCPE protein.
This mutant was grown on LB medium containing
MVA as well as [1-3H]ME12 and analyzed for radioac-

tive metabolites derived from the tritium labeled
substrate.13,14

After TLC of the ethanol/water extract of the bacterial
cells, a single major radioactive compound was detected
using a radioactivity linear detector, isolated and iden-
tified by radiochemical methods. The amounts were too
low for a direct spectroscopic identification. The
radioactive metabolite coeluted on silica gel TLC plates
and on a Sephadex® QAE A-25 ion exchange column
chromatography with ME cyclodiphosphate 7, which
was prepared from benzylviologen treated Corynebac-
terium ammoniagenes and used as a carrier.15,16 Upon
HF hydrolysis, it released, like ME cyclodiphosphate,
free ME, which was identified by TLC coelution with
synthetic ME. On ion exchange chromatography, the
radioactive ME cyclodiphosphate decomposed, like the
carrier, into a 2:1 mixture (according to 31P NMR) of
ME cyclodiphosphate and of a compound eluting like
ME 2,4-biphosphate 10. The latter ME derivative 10
was also obtained after purification of ME cyclodiphos-
phate from Corynebacterium ammoniagenes using the
same procedure and was identified by spectroscopic
methods.14 Negative ion mode electrospray mass spec-
trometry showed that the cyclic diphosphate structure
was opened, and that two phosphate groups were
present. Opening of the cyclic diphosphate was also
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pointed out by the absence of a phosphorus/phospho-
rus coupling, which characterizes the 31P NMR spec-
trum of ME cyclodiphosphate (2J=22 Hz):15 the
phosphorus signals appeared as two singlets, which
were downfield shifted as compared to the two doublets
observed in the spectrum of the corresponding
cyclodiphosphate.

A control experiment was performed with the E. coli
strain EcAB4-3, which corresponded to the previous
strain, but harboring an intact gcpE gene. The same
[1-3H]ME incorporation experiment was performed. No
accumulation of tritium labeled ME cyclodiphosphate
was observed. In contrast, two apolar compounds were
detected. They coeluted on TLC plates with
ubiquinone-9 and menaquinone-9, which correspond to
the only easily detectable final products of the iso-
prenoid metabolism in E. coli.

On the role of the gcpE gene product in the MEP
pathway

Disruption of the gcpE gene induces in the E. coli cells
the accumulation of ME cyclodiphosphate 7, the last
identified intermediate in the MEP pathway. This
shows that the GCPE protein is required for the con-
version of ME cyclodiphosphate 7 into isoprenoids.
Such biochemical evidence confirms previous work,
which only provided genetic evidence demonstrating
that the gcpE gene is involved in the trunk line of the
MEP pathway.8a In addition, conversion of [1-3H]ME
into ubiquinone-9 and menaquinone-9, the final prod-
ucts of the isoprenoid metabolism, when the gcpE gene
is intact, and failure of incorporation, when this gene is
disrupted, are also in agreement with the involvement
of the GCPE protein in the MEP pathway. Although
such labeling experiments confirmed that the GCPE
protein is essential in the MEP pathway, they did not
shed light on the precise role of this protein. It seems
very likely that the gcpE gene product possesses an
enzymatic activity, and that ME cyclodiphosphate 7 is
its putative substrate, but it cannot be excluded that the
GCPE protein could have a structural or regulatory
role.
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